
1

Ralph Bateman - STSM Messaging Serviceability & Support
Strategy – ralph@uk.ibm.com

David Coles – WebSphere Message Broker Level 3 Technical Lead,
IBM Hursley – dcoles@uk.ibm.com

Thursday 11th August 2011

S09439: You think you have problems...well
maybe you do. Diagnosing problems for
Message Broker

Agenda
• What are the “moving” parts
• Where is the diagnostic information

• Syslog
• Stdout/Stderr
• Error log

• What Trace to use
• User Trace
• Service Trace

• What do I do with a Dump / FFDC ?
• What are the common “Status” commands
• “Out the box” Tools available for debugging

• Toolkit
• MBX

• How to Diagnose Common Scenarios
• My Broker won’t start
• My Flow wont deploy and my EG fails
• Where's my output message?

2

The “moving” parts of a z/OS Broker

LE
process

Broker

Message Flow Engine(s)

Controller Administrative
Agent

Process
Node

Input
Node

Output
Node

Filter
Node

Process
Node

Node

z/OS

Control
Process

Execution
group n

Infra-
structure
main

Threads

bipservice DataFlow
Engine

bipbroker

Execution
group 2

Infra-
structure
main

DataFlow
Engine

Threads

Infra-
structure
main

WebSphere
MQ

DB2 RRSOMVS

/s nnBRK

biphttp
listener

Execution
group 1

Infra-
structure
main

DataFlow
Engine

Threads

Deployment
Manager

N

O

T

E

S

The “moving” parts of a z/OS Broker
zAddress Space and Process model.

�The broker runtime environment is a *collection* of address spaces (AS), which allows natural isolation, recovery and scalability.
�Each address space contains at least 2 Language Environment (LE) processes. The first, or *infrastructure* process is started authorized so that it
can create z/OS components (PCs for SVC dumps etc.), and then returns to problem state. This process only exists on z/OS. After initialization, it
creates and monitors a second process, which performs the main brokering function.
�Other processes in each AS runs platform independent code using C++ and Java (publish/subscribe) to implement brokering function.

zWhat are the brokering function address spaces?

�Control address space. This is the broker started task address space. The Control process within it is small and monitors for failures of the
Administration Agent (AA) process. On z/OS, a console listener thread enables z/OS console interactions with users through the MODIFY interface.
The AA process serves as the agent to the configuration manager and, by extension, Workbench. It manages the deployment of message flows and
message sets, and manages the lifecycle and command reporting of execution groups (EG). When using WebServices nodes (HTTPInput,
HTTPReply) the http listener process runs in this address space.
�Execution Group address spaces. These are where the message flows deployed from the Configuration Manager execute. The DataFlowEngine
process itself contains a number of threads and predefined flows (Configuration) to support the various brokering functions. Multiple EG address
spaces remove any concern about (Virtual Storage Constraint Relief) VSCR.

zThere are a large number of associated address spaces with which the broker interacts.

�OMVS. This address space provides several industry standard interfaces (XPG4) that allow the MB processing model and code to be largely
platform independent.
�WebSphere MQ. This is one of the primary transports for dataflows, and WMQI uses it for inter-process and inter-platform communication. For
example, the AA communicates with the EGs and CM using XML messages flowed over WMQ.
�RRS. As the broker runs within regular z/OS address spaces, Resource Recovery Services (RRS) is the transaction manager that enables the
coordination of resources (message queues, database tables) accessed by a dataflow.

zz/OS, Language Environment and Java provide many services.

�The major processes (not bipimain) written in C++ and Java are supported by the LE and Java runtimes respectively. These use z/OS interfaces for
much of their processing.
�An LE process is a set of threads sharing resources (file handles etc.). An AS serves as a process container. Processes start in the same address
space according to the _BPX_SHAREAS (YES,NO) environment variable, and/or authorization requirements. A thread is a unit of execution
synonymous with a Task Control Block (TCB).

3

Put in ASID display showing STDERR/STDOUT and breakdown here.

Where is the diagnostic information

As you’d expect from a regular z/OS subsystem, the
operational output will be available from the MVS SYSLOG
and JOBLOGs in the form of BIP product messages.

JOBLOGs have the advantage of partitioning messages by
address space, typically execution groups. All command
output is directed to the JES SPOOL as expected.

Notice the STDOUT/STDERR files to help catch those Java
programmers writing to standard output devices.

SYSLOG
JOBLOG MQxxBRK

Put in ASID display showing STDERR/STDOUT and breakdown here.

What Trace to use and when

Trace is available for separate components which can be
formatted to a text output. Held in <CO

Various trace is available:
•Flow User Trace – for you.
•Internal “Service” Trace – for IBM Support
•Command traces – for all
•CVP trace – for all

Trace

User

Service

4

Example usertrace
Trace written by version 7002; formatter version 7002 (build S700-FP02)
2011-08-09 21:58:23.159181 6468 UserTrace BIP2632I: Message received and propagated to 'out' terminal of MQ input node 'DebugFlow1.MQ Input'.
2011-08-09 21:58:23.159496 6468 UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length 0 bytes

beginning at offset '0'.
2011-08-09 21:58:23.159585 6468 UserTrace BIP6061I: Parser type ''MQMD'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '364' bytes

beginning at offset '0'. Parser type selected based on value ''MQHMD'' from previous parser.
2011-08-09 21:58:23.159654 6468 UserTrace BIP6069W: The broker is not capable of handling a message of data type ''MQSTR''.

The message broker received a message that requires the handling of data of type ''MQSTR'', but the broker does not have the capability to handle data of this type.
Check both the message being sent to the message broker and the configuration data for the node. References to the unsupported data type must be removed if the

message is to be processed by the broker.
2011-08-09 21:58:23.160024 6468 UserTrace BIP6061I: Parser type ''XMLNSC'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '143'

bytes beginning at offset '364'. Parser type selected based on value ''XMLNSC'' from previous parser.
2011-08-09 21:58:23.160163 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.Main', '2.2').
2011-08-09 21:58:23.160373 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''CopyEntireMessage();'' at ('.DebugFlow1_Compute.Main', '3.3').
2011-08-09 21:58:23.160455 6468 UserTrace BIP2538I: Node 'DebugFlow1.Compute': Evaluating expression ''CopyEntireMessage()'' at ('.DebugFlow1_Compute.Main', '3.8').
2011-08-09 21:58:23.160533 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.CopyEntireMessage', '1.39').
2011-08-09 21:58:23.160598 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot = InputRoot;'' at

('.DebugFlow1_Compute.CopyEntireMessage', '2.3').
2011-08-09 21:58:23.160839 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''InputRoot'' at ('.DebugFlow1_Compute.CopyEntireMessage', '2.20'). This

resolved to ''InputRoot''. The result was ''ROW... Root Element Type=16777216 NameSpace='' Name='Root' Value=NULL''.
2011-08-09 21:58:23.160905 6468 UserTrace BIP2568I: Node 'DebugFlow1.Compute': Copying sub-tree from ''InputRoot'' to ''OutputRoot''.
2011-08-09 21:58:23.161085 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot.XMLNSC.Order.Total =

CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL) * CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER);'' at ('.DebugFlow1_Compute.Main', '4.3').
2011-08-09 21:58:23.161277 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Price'' at ('.DebugFlow1_Compute.Main',

'4.44'). This resolved to ''OutputRoot.XMLNSC.Order.Item.Price''. The result was '''3'''.
2011-08-09 21:58:23.161457 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL)'' at

('.DebugFlow1_Compute.Main', '4.39'). This resolved to ''CAST('3' AS DECIMAL)''. The result was ''3''.
2011-08-09 21:58:23.161539 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Quantity'' at ('.DebugFlow1_Compute.Main',

'4.98'). This resolved to ''OutputRoot.XMLNSC.Order.Item.Quantity''. The result was '''7'''.
2011-08-09 21:58:23.161687 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at

('.DebugFlow1_Compute.Main', '4.93'). This resolved to ''CAST('7' AS INTEGER)''. The result was ''7''.
2011-08-09 21:58:23.161767 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL) *

CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at ('.DebugFlow1_Compute.Main', '4.91'). This resolved to ''3 * 7''. The result was ''21''.
2011-08-09 21:58:23.161844 6468 UserTrace BIP2566I: Node 'DebugFlow1.Compute': Assigning value ''21'' to field / variable ''OutputRoot.XMLNSC.Order.Total''.
2011-08-09 21:58:23.161916 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''RETURN TRUE;'' at ('.DebugFlow1_Compute.Main', '5.3').
2011-08-09 21:58:23.162040 6468 UserTrace BIP4015I: Message propagated to the 'out' terminal of node 'DebugFlow1.Compute' with the following message trees: ''.
2011-08-09 21:58:23.162214 6468 UserTrace BIP3904I: Invoking the evaluate() method of node (class='ComIbmJavaComputeNode', name='DebugFlow1#FCMComposite_1_4').

About to pass a message to the evaluate() method of the specified node.
No user action required.

2011-08-09 21:58:23.162866 6468 UserTrace BIP2638I: The MQ output node 'DebugFlow1.MQ Output' attempted to write a message to queue ''OUT.DEBUG'' connected to queue manager
''''. The MQCC was '0' and the MQRC was '0'.

2011-08-09 21:58:23.162927 6468 UserTrace BIP2622I: Message successfully output by output node 'DebugFlow1.MQ Output' to queue ''OUT.DEBUG'' on queue manager ''''.
Threads encountered in this trace:
6468

N

O

T

E

S

• Useful Output files
• Now that you've understood the moving parts of a z/OS broker and how to use it, here's a

useful file list and a brief content description.

• Job Log and Syslog
• This is where you’ll go to for most of your local operational information on broker behaviour.

Note that the Eclipse tooling or Message Broker Explorer will provide Administration
Perspectives applicable for some class of users, here we are considering native operational
interaction with the z/OS operating system.

• SYSLOG (SDSF) contains all BIP messages. In the event of a problem, it's also worth looking
for messages from other subsystems, e.g. End of Task messages (EOT).

• z/OS Standard Message suppression techniques (MPFLSTxx) can be used to stop any of the
commands reaching the MVS log, if you have concern about volume or message importance of
messages. This is not usually applicable of Broker users (i.e. the broker doesn’t generate
unnecessary messages to the console.)

• FFDC/Abends
• MiniAbends and FFDCs can be found on zFS to help get first failure information of errors

• <Broker_HFS>/common/errors/CEEDUMP.*

• Trace files
• Trace files are always written to the zFS, so make sure you have enough space in the mount.

• <Broker_HFS>/common/log/*
• Trace files should be formatted on the customer machine using BIPxxxxx JCL in component

PDS.

Where is the diagnostic information

5

N

O

T

E

S

stdout/stderr
• Useful place to look for errors / debugging

• Always worth checking for exceptions if problems are occurring
• Each major component redirects its stdout/stderr streams to files

• Windows
• Admin Agent (7.0.0.2)

C:\Documents and Settings\All Users\Application Data\IBM\MQSI\components\<brkName>\console.txt

• Execution group
C:\Documents and Settings\All Users\Application Data\IBM\MQSI\components\<brkName>\<egUUID>\console.txt

• Linux/Unix
• Admin Agent (7.0.0.2)

/var/mqsi/components/<brkName>/stdout & stderr

• Execution group
/var/mqsi/components/<brkName>/<egUUID>/stdout & stderr

• z/OS
• STDOUT / STDERR DD cards in the joblog for both the main broker

address space and for any execution groups
• Can be useful for flow developers who use Java and code

system.out.println statements for debugging

N

O

T

E

S

6

What do I do with a DUMP / FFDC?

• We bag up as much information as possible
and put it in a “DUMP” or FFDC.

• The next steps are just a puzzle waiting
to be solved

Call IBM Support or not?
• The traceback is placed into a CEEDUMP file, which resides in the <component_HFS>/common/errors directory.
• Each traceback is preceded by the date, time, and unique identifier; for example, CEEDUMP file - CEEDUMP.20100924.171754.84017230

• The abend occurs with an Entry Point name of _NumCompute_evaluate.
• We know that Message Broker always starts Imb so this needs to be looked at by the application team or third party vendor who produced the

lil.

7

N

O

T

E

S

What do I do with a DUMP / FFDC?

Dumps are taken by the broker for a number of situations. They do not
always mean a code problem.

There are some very simple things that can be done to determine if the
issue needs IBM Support help, or just your application teams.

Look at the FFDC files that the Broker produces in /common/errors/CEE*
to determine who is at “fault”

If the Entry Point name starts IMB then raise a PMR and contact IBM
Support.

If not, then the module may be a third party product or an application
node.

N

O

T

E

S

8

Status commands
• Non-persistent trace option (7.0.0.3)

• How do I find the evidence of what went wrong.
• New ability to Enable execution group wide trace level that

doesn’t survive a restart
• Helps to capture trace for abend/shutdown situations
• Stops traces being wrapped during restart

• What traces are running (7.0.0.3)
• mqsireporttrace is now recursive ☺

• mqsireporttrace <brkName>
• Reports all service and user traces which are active

• mqsireporttrace <brkName> -t
• Reports all service traces which are active

• mqsireporttrace <brkName> -u
• Reports all user traces which are active

BIP8945I: Service trace settings for execution group 'test1' - mode: 'safe', size: '195' KB
BIP8946I: Service trace is enabled for execution group 'test1' with level 'debug'.
BIP8945I: Service trace settings for execution group 'EG2' - mode: 'safe', size: '195' KB
BIP8947I: Service trace is enabled for message flow 'TestFlow' with level 'debug'.
BIP8948I: User trace settings for execution group 'EG2' - mode: 'safe', size: '195' KB
BIP8949I: User trace is enabled for execution group 'EG2' with level 'debug'.

What level is my broker?
• On z/OS look a the JOBLOG ☺
BIP9272I MQ91BRK RALPH 0 THE DATAFLOWENGINE PROCESS HAS REGISTERED SMF 89

SUBTYPE 1 RECORD COLLECTION. RETURN CODE '0', : ImbMain(397) BIP2208I
MQ91BRK RALPH 0 EXECUTION GROUP (64) STARTED: PROCESS '16909047'; THREAD
'2007049624853938176'; ADDITIONAL INFORMATION: BROKERNAME 'MQ91BRK'
(OPERATION MODE 'enterprise'); EXECUTIONGROUPUUID '93d22eb0-3101-0000-0080-
c3ce9c5af203'; EXECUTIONGROUPLABEL 'RALPH'; QUEUEMANAGERNAME 'MQ91';
TRUSTED 'false'; USERID ''; MIGRATIONNEEDED 'false'; BROKERUUID '3e2d440a-b1e4-
11e0-a4e8-000000000000'; FILEPATH '/u/wmqi91/broker/instpath'; WORKPATH
'/u/wmqi91/broker'; ICU CONVERTER PATH ''. : ImbMain(605)

BIP9108I MQ91BRK RALPH 0 BROKER SERVICE VALUE IS IMBSERV.V7R0M00.FP02..... :
ImbMain(614)

On distributed run the command : mqsiservice –v
C:\Program Files\IBM\MQSI\7.0.0.3.L110525_P>mqsiservice -v

BIPmsgs en_GB
Console OEM CP=437, ICU CCSID=5348
Default codepage=ibm-5348_P100-1997, in ascii=ibm-5348_P100-1997
JAVA console codepage name=cp437

BIP8996I: Version: 7003
BIP8997I: Product: WebSphere Message Broker
BIP8998I: CMVC Level: S700-L110525
BIP8999I: Build Type: Production, 32 bit, x86_nt_4
BIP8071I: Successful command completion.

9

What “out the box” Tools are available?

• Message Broker Toolkit
• Flow debugger

• Useful for debugging message flows during their development

• Message Broker Explorer
• Flow statistics

• Useful for highlighting the cause of performance problems
• Baseline good operation

• Resource stats
• Useful for highlighting areas of concern in message flows or

performance bottlenecks.

N

O

T

E

S

10

Message Flow Debugger

HOWTO Enable the debugger to allow you to
debug message flows from the Message
Broker toolkit

Message Flow Debugger

HOWTO Configure the Source lookup path to enable you to step through you message
flow application

11

Message Flow Debugger

Resume

Step Over

Step Into Source

Run To Completion

Step Return

N

O

T

E

S

Message Flow Debugger

• Use the Message Flow debugger to debug your message flows
• Set breakpoints on the connections between nodes
• At each stage you can view (and edit) the Message Trees
• Step into ESQL or Java compute nodes
• Requires the enablement of the JVMDebug port on the execution

group you wish to debug
• Don’t do this on production machines as it hits performance

12

Message Flow Statistics

N

O

T

E

S

Message Flow Statistics - Notes

• You can enable and display message flow statistics using MBX.
• You can the use the results and graphs to diagnose performance and operational problems.
• During normal operation it can be useful to enable message flow statistics so you can get a feel for what ‘normal’

looks like as well as to help tuning flows and machines for performance.
• During operational issues you may notice that certain nodes are using more/less cpu than normal, or maybe a

certain node is showing no usage data, so perhaps is no longer being driven when it should. All quantifiable
differences could be indicative of an issue worth investigating, or provide clues to help solve other problems.

• With the statistics view open in MBX click on the execution group or message flow to change the scope of the data
displayed. Clicking on the execution group will restrict the information to the flow level, whereas clicking on a given
flow will show the statistics at a node level.

13

• Find out the current resource usage of a
broker or execution group

• CICS – successful requests, failures,
security failures…

• CORBA – Invocations, Success,
Failures

• FTE – Inbound/Outbound transfers,
bytes sent/received…

• JDBC – Requests, Cached requests,
Providers…

• JVM – Memory used, thread count,
heap statistics…

• ODBC – Connections, Closures,
Errors, Successes

• SOAPInput – Inbound messages,
Replies, Failures, Policy Sets

• Security – Operations, Success,
Failures, Cache usage…

• Sockets – Total sockets, message
sizes, Kb sent/received

• Parsers – Memory usage; message
elements created/deleted; parser
count

• More resource types being added in the
future

Resource Statistics

• Each resource reports values specific to the given
resource type

• Failure counts are often key values to monitor

• Parser stats provide a great insight to a given flow

Resource Statistics - Examples

14

N

O

T

E

S

Resource Statistics - Notes

• Every resource is different, so each resource reports different values.
• In the same way as with message flow statistics, it’s a good idea to enable resource statistics when things are

going well so that you can get a feeling, or some concrete numbers for what to expect.
• The key values to monitor are the failure counts.
• When you’re having trouble and you know that your flows make use of certain resources take a look at the failure

counts or connection errors to see if they are highlighting any issues.
• Other key values are the bytes sent/received. If these are not increasing when they should be then they might

point at a problem.
• Message Broker does not attempt to provide analytics or averages on the values. The raw numbers are presented

and published to allow customers and external tools to provide the analytics.
• As with message flow statistics the resource statistics data format is documented and the data is published as xml

messages to a given topic allowing customers and other applications to subscribe to and process the data.
• As well as looking for errors through the failed reads and failed writes counts, parser resource statistics can be

used to size your message flows as they given an approximation of the memory used by the message flow for
parsing and the logical tree structure. You can also see the maximum size input and output buffers used, so you
can tell the max message sizes being processed, and you can see the number of fields being created, which can
all point at problems with flow design, or if these numbers change over baseline figures, of a change in message
size/type being processed.

N

O

T

E

S

15

How to diagnose some common scenarios

Scenarios
• Message Broker won't start

• First check the JOBLOG.
+BIP8873I MQ91BRK 0 Starting the component verification for component 'MQ91BRK'. : ImbComponentVerification(78)
+BIP8875W MQ91BRK 0 The component verification for 'MQ91BRK' has finished, but one or more checks failed. :
ImbComponentVerification(187)

• Then check the STDOUT/STDERR for MQSICVP
BIP8873I: Starting the component verification for component 'MQ91BRK'.
BIP8876I: Starting the environment verification for component 'MQ91BRK'.
BIP8894I: Verification passed for 'Registry'.
BIP8894I: Verification passed for 'MQSI_REGISTRY'.
BIP8907E: Verification failed. Unable to verify Java level.
Unable to verify the installed Java level. This error is typically caused by Java not being installed, or a file permissions error.
Ensure Java has been correctly installed, by running the command java -version.
If Java has been correctly installed, see the preceding messages for further information about the cause of this failure, and the actions that you can take
to resolve it.
BIP8894I: Verification passed for 'MQSI_COMPONENT_NAME'.
BIP8894I: Verification passed for 'MQSI_FILEPATH'.
BIP8900I: Verification passed for APF Authorization of file '/u/wmqi91/broker/instpath/bin/bipimain'.
BIP8894I: Verification passed for 'Current Working Directory'.
BIP8877W: The environment verification for component 'MQ91BRK' has finished, but one or more checks failed.
One or more of the environment verification checks failed.
Check the error log for preceding error messages.
BIP8882I: Starting the WebSphere MQ verification for component 'MQ91BRK'.
BIP8886I: Verification passed for queue 'SYSTEM.BROKER.ADMIN.QUEUE' on queue manager 'MQ91'.
BIP8886I: Verification passed for queue 'SYSTEM.BROKER.EXECUTIONGROUP.QUEUE' on queue manager 'MQ91'.
BIP8886I: Verification passed for queue 'SYSTEM.BROKER.EXECUTIONGROUP.REPLY' on queue manager 'MQ91'.
BIP8884I: The WebSphere MQ verification for component 'MQ91BRK' has finished successfully.
BIP8875W: The component verification for 'MQ91BRK' has finished, but one or more checks failed.
One or more of the component verification checks failed.
Check the error log for preceding error messages.

16

Deploy of a Message flow fails

bipbrokerbipservice dataflowenginedataflowenginedataflowengine

biphttplistener

Command line utilities

CMPAPI

Message Broker Explorer Message Broker Toolkit CMP Applications

Runtime

import com.ibm.broker.config.proxy.*;
public class DeployBAR {
public static void main(String[] args) {
BrokerConnectionParameters bcp =

new MQBrokerConnectionParameters("localhost", 2414,
"MB7QMGR");

try {

BrokerProxy b = BrokerProxy.getInstance(bcp);
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
DeployResult dr = eg.deploy("MyBAR.bar", true, 30000);
System.out.println("Result = "+dr.getCompletionCode());

} catch (Exception e) {
e.printStackTrace();

}
}

}

Deploy of a Message flow fails
• Whether you deploy using the Message Broker Toolkit, MBX or via the command line

you will see any deploy errors being reported
• Always make sure to read all of the messages.

• The first or last message might not always contain the most relevant information• In this scenario the Java compute node cannot find it’s class
• Has the relevant jar file been deployed or made available in

the shared_classes directory?

17

Where’s my output message?

• A user reports that they’re not receiving any messages
• So where are the messages going and what can you look at?

• Resource statistics
• Message Flow statistics
• User trace
• Message Flow Debugger

• We’ll see how all of the above can be used to piece together the pieces of the
puzzle

• The message flow

• A simple MQ In/Out flow with some transformation logic

Where’s my output message?
• Resource statistics

• Is there a resource stat available for your output transport that would show
if messages are being written?

• MQ is not yet available, so not helpful here
• But CICS, CORBA, FTP, File, HTTP Sockets & TCPIP Nodes are available
• The parsers output could be useful
• Are any messages being written?

• No writes are occurring
• So no output messages are being written

18

Where’s my output message?
• Message Flow statistics

• Are all nodes in the flow being driven as expected?

• The MQOutput node is not being driven
• So no output messages will be written

Where’s my output message?
• User Trace

• Can we see why the MQOutput node is not being driven?
• We saw earlier what to look for in a User Trace, can we see that here?

UserTrace BIP2632I: Message received and propagated to 'out' terminal of MQ input node 'DebugFlow1.MQ Input'.
UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length 0 bytes beginning at

offset '0'.
UserTrace BIP6061I: Parser type ''MQMD'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '364' bytes beginning at

offset '0'. Parser type selected based on value ''MQHMD'' from previous parser.
UserTrace BIP6061I: Parser type ''XMLNSC'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '144' bytes beginning at

offset '364'. Parser type selected based on value ''XMLNSC'' from previous parser.
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.Main', '2.2').
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''CopyEntireMessage();'' at ('.DebugFlow1_Compute.Main', '3.3').
UserTrace BIP2538I: Node 'DebugFlow1.Compute': Evaluating expression ''CopyEntireMessage()'' at ('.DebugFlow1_Compute.Main', '3.8').
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.CopyEntireMessage', '1.39').
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot = InputRoot;'' at ('.DebugFlow1_Compute.CopyEntireMessage', '2.3').
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''InputRoot'' at ('.DebugFlow1_Compute.CopyEntireMessage', '2.20'). This resolved to

''InputRoot''. The result was ''ROW... Root Element Type=16777216 NameSpace='' Name='Root' Value=NULL''.
UserTrace BIP2568I: Node 'DebugFlow1.Compute': Copying sub-tree from ''InputRoot'' to ''OutputRoot''.
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot.XMLNSC.Order.Total = CAST(OutputRoot.XMLNSC.Order.Item.Price AS

DECIMAL) * CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER);'' at ('.DebugFlow1_Compute.Main', '4.3').
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Price'' at ('.DebugFlow1_Compute.Main', '4.44'). This

resolved to ''OutputRoot.XMLNSC.Order.Item.Price''. The result was '''3'''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL)'' at

('.DebugFlow1_Compute.Main', '4.39'). This resolved to ''CAST('3' AS DECIMAL)''. The result was ''3''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Quantity'' at ('.DebugFlow1_Compute.Main', '4.98'). This

resolved to ''OutputRoot.XMLNSC.Order.Item.Quantity''. The result was '''77'''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at

('.DebugFlow1_Compute.Main', '4.93'). This resolved to ''CAST('77' AS INTEGER)''. The result was ''77''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL) *

CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at ('.DebugFlow1_Compute.Main', '4.91'). This resolved to ''3 * 77''. The result was ''231''.
UserTrace BIP2566I: Node 'DebugFlow1.Compute': Assigning value ''231'' to field / variable ''OutputRoot.XMLNSC.Order.Total''.
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''RETURN TRUE;'' at ('.DebugFlow1_Compute.Main', '5.3').
UserTrace BIP4015I: Message propagated to the 'out' terminal of node 'DebugFlow1.Compute' with the following message trees: ''.
UserTrace BIP3904I: Invoking the evaluate() method of node (class='ComIbmJavaComputeNode', name='DebugFlow1#FCMComposite_1_4').
About to pass a message to the evaluate() method of the specified node.
No user action required.

… then the trace ends ….

• The last thing the trace shows is the
JavaCompute node being invoked

• This never propagates to its output terminal
• Why?

19

Where’s my output message?
• Message Flow Debugger

• Enable and connect to the debug port
• Add a breakpoint to the message flow

• Fire in a message and the breakpoint triggers

• We can then step through the message flow and into the ESQL and Java
code

Where’s my output message?
• Message Flow Debugger

• As the message is never propagated from the JavaCompute node we need
to see why

• When the flow is paused on the connection between the compute and
JavaCompute nodes we can step into the source

20

Where’s my output message?
• Message Flow Debugger

• Once in the Java source we can step through the code to understand why
propagate is never called

• We only propagate if the total cost is not
greater than 50

• Here it’s 231
• So case closed, input data, user

expectation or message flow design error

Summary

• What are the “moving” parts
• Where is the diagnostic information
• What Trace to use
• What do I do with a Dump / FFDC ?
• What are the common “Status” commands
• “Out the box” Tools available for debugging
• How to Diagnose Common Scenarios

21

MQ Q-Box - Open
Microphone to ask the
experts questions

Free MQ! - MQ
Clients and what you
can do with them

06:00

Keeping your MQ
service up and running -
Queue Manager
clustering

For your eyes only -
WebSphere MQ
Advanced Message
Security

All About WebSphere
MQ File Transfer
Edition

Message Broker
administration for
dummies

04:30

Message Broker
Patterns - Generate
applications in an instant

Under the hood of
Message Broker on
z/OS - WLM, SMF
and more

The MQ API for
dummies - the basics

Keeping your eye
on it all - Queue
Manager
Monitoring &
Auditing

03:00

Getting your MQ JMS
applications running,
with or without WAS

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

WebSphere Message
Broker 101: The
Swiss army knife for
application integration

Diagnosing
problems for MQ

01:30

Using the WMQ V7
Verbs in CICS Programs

The doctor is in.
Hands-on lab and lots
of help with the MQ
family

MQ Freebies! Top
5 SupportPacs

12:15

What's new for the MQ
Family and Message
Broker

Diagnosing problems for
Message Broker

The Do’s and Don’ts
of Message Broker
Performance

MQ Publish/Subscribe11:00

MQ Project Planning
Session

So, what else can I do? -
MQ API beyond the
basics

The Do’s and Don’ts
of Queue Manager
Performance

WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

09:30

Lyn's Story Time -
Avoiding the MQ
Problems Others have
Hit

Batch, local, remote,
and traditional MVS - file
processing in Message
Broker

More than a
buzzword: Extending
the reach of your MQ
messaging with Web
2.0

08:00

FridayThursdayWednesdayTuesdayMonday

This was session 09431 - The rest of the week ……

Session 09439

You think you have problems...well maybe you do.
Diagnosing problems for Message Broker

